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Abstract

Recent progress in supervised image classification research, has demonstrated the potential usefulness of incorporating
fuzziness in the training, allocation and testing stages of several classification techniques. In this paper a multiresolu-
tion neural network approach to supervised classification is presented, exploiting the inherent fuzziness of such tech-
niques in order to perform classification at different resolution levels and gain in computational complexity. In par-
ticular, multiresolution image analysis is carried out and hierarchical neural networks are used as an efficient archi-
tecture for classification of the derived multiresolution image representations. A new scheme is then introduced for
transferring classification results to higher resolutions based on the fuzziness of the results of lower resolutions, re-
sulting in faster implementation. Experimental results on land cover mapping applications from remotely sensed data
illustrate significant improvements in classification speed without deterioration of representation accuracy.

1. Introduction

Recent advances in supervised image classification have
shown that conventional ‘hard’ classification techniques,
which allocate each pixel to a specific class, are often
inappropriate for applications where mixed pixels are
abundant in the image [1]. A typical application where
the classes may not be considered to be discrete and
mutually exclusive, is land cover mapping from re-
motely sensed data. For instance, in a remotely sensed
image, there may be a continuous and gradual transition
between land cover classes resulting in regions of mixed
pixel composition. In addition, due to limited image
resolution, pixels often represent ground areas which
comprise two or more discrete land cover classes [2].

For this reason it has been proposed that fuzziness
should be accommodated in the classification procedure
so that pixels may have multiple or partial class mem-
bership [3,4]. In this case a measure of the strength of
membership for each class is output by the classifier,
resulting in a ‘soft’ classification technique. However,
since most classification techniques comprise three
common stages, namely, the training, the allocation and
the testing stage, fuzziness should be incorporated in all
three stages [5], as it will be explained in the next sec-
tion.

Traditionally, image classification is performed by a
maximum likelihood, or Bayesian classifier, which as-
signs the most likely class to the observed data, and is
known to be optimal if the assumptions about the prob-
ability density functions are correct. Neural networks, on
the other hand, with their ability of learning, have no
need of assumptions about the probabilistic model.
Moreover, recent results on classification of multisource

remote sensing data [6] and on multispectral Landsat
images [7,8], have shown that neural networks are often
able to perform better than maximum likelihood classifi-
ers. For the above reason they are adopted in this paper.

The use of neural network classifiers in conjunction with
multiresolution image analysis has led to efficient algo-
rithms for image processing and analysis [9] as well as
to the derivation of representations of images appropri-
ate for invariant recognition [10]. This work has moti-
vated us to exploit the fuzziness of the image classifica-
tion in each resolution level and to derive an efficient
scheme for fuzzy image classification using multiresolu-
tion neural network classifiers.

2. Fuzzy Image Classification

In this section, the process of incorporating fuzziness in
the training, allocation and testing stages of a feed-
forward neural network classifier will be descibed. Con-
ventionally, in supervised classification (statistical or
with neural networks) each pixel of an image is assigned
a unique class according to a specified criterion, i.e., the
class  with which it displays the highest a posteriori
probability of membership, or the one that corresponds
to the maximum output of a neural network.

However, by taking the activation level of a neural net-
work output node as a surrogate for the proportional
coverage of a pixel associated with that node, mixed
pixels may be relatively easily accommodated in train-
ing a neural network. This is achieved by defining the
class composition of each training pixel, as the desired
output from the network for that pixel [5]. The network
may then be trained as usual, with a learning algorithm



that attempts to minimise the error E between the de-
sired and actual network outputs di and oi, typically ex-
pressed as
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where xp is the pth training sample, P is the number of
training patterns and C is the number classes.

In the training stage of the classification, where pixels
of known class membership are identified and used to
characterise the classes, the key is to include in the
training set an adequate number of mixed pixels with
their associated class compositions.

In the allocation stage, where class characterisations are
used to allocate pixels of unknown class membership,
fuzziness is accommodated by using the activation lev-
els of the output nodes (which always lie in the area
[0,1] for the sigmoid activation function) as measures of
the strength of class membership that reflect the class
composition.

Finally, in the testing stage, an efficient method should
be used for evaluating the classification accuracy. Con-
ventional approaches based on confusion matrices, such
as the percentage of correct allocation are applicable
only to ‘hard’ classification. For this reason several ap-
proaches are suggested in [3] and [5] of which the most
common is the Euclidean distance
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where di(xn) and oi(xn) are the desired and actual net-
work outputs, respectively, i.e., the two classification
measures to be compared, xn is the nth evaluation sam-
ple and N  is the number of evaluation patterns, i.e., the
number of pixels in the evaluation image.

It should be noted that fuzziness can be equally well
accommodated in the Bayesian classifier using similar
arguments. Other techniques have also been proposed
for obtaining directly a fuzzy classification such as the
fuzzy c-means clustering algorithm [3].

3. Multiresolution Decomposition

In order to train a neural network to classify remotely
sensed data, the land cover composition of training pix-
els should be known [1], and operationally this compo-
sition could be derived from a finer spatial resolution
image co-registered to the image to be classified. It may
also be possible in the near future to make use of data
acquired from satellite sensors at two or more spatial
resolutions simultaneously.

It is evident therefore that starting from an image with
known ‘hard’ classification (spatial distribution of the
classes represented by fraction images depicting the
proportional coverage of a class in each pixel) to apply
multiresolution decomposition to both the original im-
age and its classification representation in order to de-

rive the fuzzy classification data that will be used as a
training set for the neural network classifier.

Representation of signals at many resolution levels has
gained much popularity especially with the introduction
of the discrete wavelet transform, implemented in a
straightforward manner by filter banks using quadrature
mirror filters (QMF) [11]. Given an NxN image x0 and
using appropriate FIR perfect reconstruction filters hL(n)
(low pass) and hH(n) (high pass), we can split the image
into four (N/2)x(N/2) images. In this way the approxi-
mation image at the lower resolution j=-1 is derived by
application of the low pass filter hL(n) in the horizontal
and vertical direction of the image:
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Similarly, three detail images denoted as xLH
−1 , xHL

−1  and

xHH
−1  are obtained by applying all other possible combi-

nations of the low and high pass filters in the horizontal
and vertical directions.

Perfect reconstruction of the original image x0 can be
achieved through synthesis of all subband components.
It is, however, possible to obtain an approximate recon-
struction of the original image by using only the low

resolution component xLL
−1 :
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If the image decomposition procedure described in Eq.
(3) is successively applied to the approximation images,
a multiresolution approximation of the original image is
obtained, consisting of images of continuously decreas-
ing size. In this case, there exist optimal design tech-
niques for analysis and synthesis filters, in terms of
minimisation of the mean square error between the
original image and its low resolution representation.
Such a technique is used in our experiments, and effi-
ciently implemented using auto-associative linear net-
works [10].

4. Hierarchical Neural Network Classification

Hierarchical neural network classifiers can then be used
as an efficient scheme for classifying the resulting mul-
tiresolution representations. A feedforward multilayer
network is first used to classify an approximation image
of quite low resolution, trained by some backpropaga-
tion variant. The hierarchical network is then recursively
constructed to handle the image at higher resolution
levels.

In the training stage, training starts at resolution level

j≤-1 to classify approximation images x j
LL  and the per-

formance is tested using a validation set of approxima-
tion images of the same resolution. Training then con-
tinues at resolution level j+1 using as mush as possible
from the ‘knowledge’  acquired by the former problem



at level j. Transfer of a generally large number of (al-
ready computed) weights between the input and the first
hidden layer of the low resolution network in corre-
sponding positions of the high resolution network is
permitted, so that these weights can remain fixed during
training of the high resolution network, as described in
detail in [10].

Moreover, in the allocation stage, since each pixel of a
resolution level j approximation image substantially
corresponds to four pixels of level j+ 1 approximation
image, and since a ‘hard’ or ‘crisp’ classification result
for a pixel of the level j image will definitely lead to an
analogous classification for all four corresponding pix-

els of the level j+ 1 image, the fuzziness of the classifi-
cation results of level j can be used as a measure for
selectively continuing or not continuing classification at
level j+ 1. In particular, classification can stop at level j
when classification results near ‘0’ or ‘1’ are derived
and all corresponding pixels of level j+1 are assigned
the same class compositions results. If, however, classi-
fication results are fuzzy, i.e., not near ‘0’ and ‘1’, clas-
sification for the corresponding pixels should be carried
out at the next level j+1. Due to the recursive nature of
the image classification process, a significant improve-
ment in terms of computational complexity is to be
gained by this selective classification algorithm.

(a)

(b)

(c)

Level 0 Level -3Level -2Level -1

Figure 1: Classification results for resolution levels 0 through -3: (a) input images to the neural network classifier, (b)
activation level at the output of the classifier (sea in black and land in white), and (c) images illustrating the regions

where the classification procedure should terminate (in white), or continue at the next resolution level (in black).

5. Experimental Results

The proposed technique was tested on an application of
land cover mapping from aerial images for the simple
case of classification into two classes: land and sea.
Each image was segmented in blocks of 8x8 pixels and
the 64 DCT coefficients of each block were used for
classification of the block. Consequently, classification
was performed in the DCT frequency domain and not in
the more correllated 2-D image space. A land cover map
was manually derived through visual analysis of the im-
ages resulting in a ‘hard’ classification (corresponding
class membership ‘0’ for sea and ‘1’ for land) at resolu-

tion level 0. The fuzzy class membership of the 8x8
blocks was then derived as the approximation of the
original ‘classification’ images at resolution level -3.
Multiresolution approximation representations were
derived for the original as well as for the ‘classification’
images using the optimal technique described in [10] for
resolution levels j=0 through -3.

Training of a feedforward neural network with one hid-
den layer was then performed at resolution levels 0
through -3 with the backpropagation algorithm, using as
inputs the 64 DCT coefficients of each block and as
output the corresponding fuzzy class memberships. Care



was taken so as to include in the training set enough
representative blocks of each class, as well as mixed
blocks which appear particularly near imprecise or fuzzy
class boundaries. Training was carried out independ-
ently at each resolution level although this could be
more efficiently done using the hierarchical approach
outlined in the previous section and more thoroughly
described in [10].

Figure 1(a) depicts an image of size 512x512 pixels
used for evaluation of the classification mechanism, at
resolution levels 0 through -3. In Figure 1(b) the corre-
sponding classification results are illustrated. The classi-
fication accuracy was similar to the one derived in [5].
In particular, the Euclidean distance D  between the
desired and actual classifications, defined in Eq. (2), was
used as a measure of classification accuracy, resulting in
a mean accuracy of D = 0 62.  for the whole evaluation
set at resolution level 0.

Finally, the recursive classification technique is illus-
trated in Figure 1(c). For each resolution level a new
image is constructed, based on the fuzziness of the cor-
responding classification results. Specifically, white
regions of the images of Figure 1(c) correspond to
‘hard’ classifications, i.e., to classifications for which
the output activation level lies in the regions [0,t] or [1-
t,1], where t is in general a small threshold. For these
regions, the classification procedure stops at the current
resolution level and pixels in the same regions of higher
resolution representations are assigned the same activa-
tion level as a classification result. Black regions, on the
other hand, correspond to ‘soft’ classification and thus
for those regions the classification procedure continues
at the next resolution level. Using t=0.1, only 500-600
blocks out of 64x64=4096 were required for the classi-
fication of a 512x512 image, resulting effectively in an
85% reduction in the computational time, while classifi-
cation accuracy was only slightly decreased (D = 0 67. ).

6. Conclusions

A multiresolution hierarchical neural network approach
to supervised classification has been presented, exploit-
ing the fuzziness of the classification results in order to
selectively perform classification at different resolution
levels and gain in computational complexity. Multire-
solution approximations have been obtained in an opti-
mal way and hierarchical neural networks have been
used for classification of the derived representations. It
has been indeed demonstrated that transferring classifi-
cation results to higher resolutions, based on the fuzzi-
ness of the results of lower resolutions, can lead to faster
implementation. Promising experimental results have
been presented, illustrating significant improvements in
classification speed without deterioration of representa-
tion accuracy.

Extensive research is currently carried out on the poten-
tial application of the derived fuzzy classification tech-
nique on other problems, such as efficient indexing and

content-based retrieval of images and video sequences
from large databases.
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